FOOD. Science. Technology. Quality

Food. SCIENCE. Technology. Quality

Food. Science. TECHNOLOGY. Quality

Food. Science. Technology. QUALITY

Authors

TERESA WITCZAK

Title

Glass transition temperature and critical storage parameters for potato starch and its derivatives

Abstract

The objective of the research study was to assess the effect of oxidation, acetylation, and double modification (acetylation and oxidation) on the glass transition temperature (Tg) and critical storage parameters of potato starch. The starch oxidation was carried out using sodium chlorate(I) and acetylation with acetic anhydride. The samples with different water activity were obtained by a static-desiccator method applied after the dried starch and its derivates had been placed in an environment with different humidity. The glass transition temperature was determined using the differential scanning calorimetry. All the modifications led to a change in the glass transition temperature compared to the native starch whereas the Tg of the oxidized starch was as close as possible to that of the native starch. The dependence of the glass transition temperature on the equilibrium moisture content was described by the Gordon-Taylor equation and by the modified Couchman-Karasz equation. The glass transition temperature of the anhydrous biopolymer varied from 241.5 ºC to 306.8 ºC, depending on the type of starch and the assumed reference temperature (glass transition temperature for water). As for all the analyzed samples, the Tg value decreased with the increasing water activity. The obtained values of k constant of the Gordon-Taylor model were within the range between 4.94 and 6.86 while the change in the heat capacity of the analyzed samples, determined from the Couchman–Karasz model, was within the range from 0.283 to 0.393 J⋅g-1⋅K-1. The change in the critical storage parameters (water activity, glass transition temperature) shows an increasing stability of the formulations produced. The acetylated starch was considered to be the most durable.

Keywords

biopolymer, starch, chemical modification, heat capacity, acetylation, oxidation, Gordon- Taylor equation

Download