FOOD. Science. Technology. Quality

Food. SCIENCE. Technology. Quality

Food. Science. TECHNOLOGY. Quality

Food. Science. Technology. QUALITY

Authors

ZBYSZKO LUBIEWSKI, JOANNA LE THANH, LIDIA STENDERA, GRAŻYNA LEWANDOWICZ

Title

Enzymatic hydrolysis of sodium starch octenylsuccinate in continuous recycle membrane reactor

Abstract

Sodium starch octenylsuccinate preparations are attracting growing attention of food technologists as potential additives thanks to their emulsifying properties. Technologically, they can be applied as low viscous hydrolysis products. Unfortunately, the traditional two-step enzymatic process is very timeconsuming and inefficient. Thus, it seems reasonable to search for alternative methods of hydrolysis process e.g. using a membrane reactor. The aim of the paper was to study the possibility of the application of a continuous recycle membrane reactor with ultrafiltration module for the sodium starch octenylsuccinates enzymatic hydrolysis. Two laboratory preparations of sodium starch octenylsuccinate containing 0.5% and 2.5% of octenylsuccinate groups respectively, and two enzyme preparations produced by Novozymes, BAN 480 L and FUNGAMYL 800 L were used in the study. The hydrolyses were conducted in the continuous recycle membrane reactor with ceramic ultrafiltration module. Membrane performance and reactor stability, as well as dry matter content, dextrose equivalent (DE), individual saccharides content and viscosity of permeate and retentate fractions were determined. Infrared spectra of the obtained products were also detected. It was found that the application of the membrane reactor enables an efficient hydrolysis of sodium starch octenylsuccinate. The application of enzyme preparation BAN 480 L provides higher efficiency of the reactor, in terms of higher levels of dry matter content in permeate fractions and higher values of permeate flux, in comparison with FUNGAMYL 800 L. Membrane performance and reactor stability are determined primarily by the rheological properties of retentate fractions. Permeate and retentate fractions differ from each other in terms of octenylsuccinate groups content. It is caused by the retention of molecules which contain modifying groups by the ultrafiltration membrane.

Keywords

starch, membrane reactor, enzymatic hydrolysis, sodium starch octenylsuccinate

Download

Skip to content