Authors
Title
Abstract
A Yarrowia lipolytica JII1c yeast strain, isolated from the Polish ‘Rokpol’ mould cheese, was used as an adjunct culture in the production of a Dutch-type cheese. Its effect on the microbiological and biochemical characteristics of the cheese was evaluated in this research study. Milk used to produce the cheese was inoculated with 105 cfu/mL yeast cells. During the ripening process, the yeast population grew systematically to reach a maximum level of 7.9 log cfu/g in the sixth week of maturation, whereas the number of lactic acid bacteria increased until the fourth week of ripening. Thereafter, the number of microorganisms in the both groups decreased. After 8 weeks of ripening, the pH value of cheese inoculated with yeasts was significantly higher than that of the control cheese sample (produced without those microorganisms) and reached the levels of 6.37 and 5.47, respectively. In the experimental cheeses, it was also found that the utilization rate of lactic and citric acids was higher. Additionally, the concentration levels of water-soluble nitrogen (WSN) and free amino groups (FAG) in the experimental cheeses were about twice as high as in the control cheese sample. A more intensive proteolysis in the experimental cheese was accompanied by a higher accumulation of biogenic amines, especially of tyramine, putrescine, and 2-phenylethylamine; in the experimental cheese, after 8 weeks, their contents amounted to: 167.01, 77.90, and 69.54 mg/100 g, respectively. In contrast, the concentration of histamine was similar in both cheeses (9.47 and 9.81 mg/100 g in the control and experimental cheese samples, respectively). Also, the experimental cheese revealed more pronounced lipolysis resulting in a higher accumulation of free fatty acids, especially of butyric, myristic, palmitic, stearic, and oleic acids. It can be concluded that the Y. lipolytica JII1c grew well in the cheese causing the ripening process of the cheese to significantly accelerate.
Keywords
Yarrowia lipolytica, cheese ripening, proteolysis, lipolysis