FOOD. Science. Technology. Quality

Food. SCIENCE. Technology. Quality

Food. Science. TECHNOLOGY. Quality

Food. Science. Technology. QUALITY




Application of HS-SPME_GC/FID method to detect early oxidative changes in flax oil


The objective of the research study was to assess whether or not it was possible to apply the headspace-solid phase microextraction (HS-SPME) and gas chromatography with flame-ionization detection (GC/FID) for the purpose of detecting early oxidative changes in flax oil. The research material comprised cold pressed flax oils: high linolenic and low linolenic oil. An accelerated auto-oxidation process of oils was performed under the thermostat conditions, at a temperature of 60 °C. The contents of selected volatile compounds were determined, as were the peroxide and anisidine values, and the Totox value was calculated. It was found that the analysis of selected volatile compounds, performed by an HS-SPME_GC/FID method and with the use of standard substances, was the method to allow the monitoring of the auto-oxidation process of high and low linolenic flax oil. The content of selected volatile compounds may be a good indicator of early oxidative changes in high linolenic flax oil. In the case of low linolenic oil, and compared to the utilization of a peroxide, anisidine, or Totox value, the measuring of selected total volatile compounds is not advantageous when determining the early oxidative changes in it.


flax oil, auto-oxidation, volatile compounds, HS-SPME_GC/FID